EASE

EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

www.EquipmentAnchorage.com

FOLLETT CORPORATION

110FB425 A/W DISPENSERS

DES. J. ROBERSON
JOB NO. 11-1420

DATE

6/12/14

1 2 SHEETS

SHEET

SEISMIC ANCHORAGE

SLAB ON GRADE

No. 4197

FRONT ELEVATION

NOTES:

1. FORCES ARE DETERMINED PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10 STRENGTH DESIGN IS USED. (SDS = 2.50, α_p = 1.0, p_p = 1.5, p_p = 2.5, p_p = 2.

HORIZONTAL FORCE (En) = 1.125 Wp HORIZONTAL FORCE (Emh) = 2.81 Wp (FOR CONCRETE ANCHORAGE) VERTICAL FORCE (Ev) = 0.50 Wp

- 2. CENTER OF GRAVITY (C.G.) AND WEIGHT ARE THE GOVERNING PARAMETERS FOR DESIGN. THESE CALCULATIONS ENCOMPASS ALL WEIGHTS UP TO THE MAXIMUM WEIGHT SHOWN.
- 3. STRUCTURAL ENGINEER OF RECORD FOR THE BUILDING SHALL PROVIDE SUPPORT STRUCTURE DESIGNED TO SUPPORT WEIGHTS AND FORCES SHOWN IN COMBINATION WITH ALL OTHER LOADS THAT MAY BE PRESENT.

EASE

EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

www.EquipmentAnchorage.com

FOLLETT CORPORATION

DES. J. ROBERSON

6/12/14

JOB NO. 11-1420

DATE

. 2

SHEETS

110FB425 A/W DISPENSERS

SEISMIC ANCHORAGE SLAB ON GRADE

	MODEL	MAX WT	Τυ	Vυ
* /	110FB425W	360#	563#	141#
1	110FB425A	355#	556#	139#

^{*} USED IN CALCULATION

SIDE ELEVATION

LOADS: PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10.

STRENGTH DESIGN IS USED (SDS = 2.50, Δp = 1.0, |p| = 1.5, Rp = 2.5, Ω_0 = 2.5, z/h = 0)

WEIGHT = 360 LB

HORIZONTAL FORCE (Emh) = 2.81 Wp = 1012 LB

VERTICAL FORCE (E_v) = 0.50 W_p = 180 LB

BOLT FORCES:

BOLT SPEC: 1/4"ø HILTI HUS -EZ

 $\phi T = 0.75 \phi Nn = 623 LB/BOLT (TENSION)$

 $\Phi V = \Phi V n = 836 LB/BOLT (SHEAR)$

TENSION (T)

$$T_{\text{U MAXIMUM}} = \left[\frac{1012\#(37'')(11.94'')}{2 \text{ BOLTS}(23.56'')(22.75'')} \times (0.3) \right] + \frac{1012\#(37'')(13.16'')}{2 \text{ BOLTS}(22.75'')(23.56'')} - \frac{(360\#(0.9) - 180\#)(11.94'')(13.16'')}{2 \text{ BOLTS}(22.75'')(23.56'')} = 563 \text{ LB/BOLT (MAX)}$$

$$(\text{HORIZ - FRONT TO BACK}) \qquad (\text{HORIZ - SDE TO SDE}) \qquad (\text{0.9WEIGHT) - Ev})$$

SHEAR (V)

$$V_{UMAXIMUM} = \frac{1012\#(13.16")}{4 \text{ BOLTS}(23.56")} = 141 \text{ LB/BOLT (MAX)}$$

EASE

EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

www.EquipmentAnchorage.com

No. 4197 EXP. 6-30-2016

FOLLETT CORPORATION

110FB425 A/W DISPENSERS

DES. J. ROBERSON
JOB NO. 11-1420

DATE

6/12/14

1

SHEET

SHEETS

<u>SEISMIC ANCHORAGE</u> <u>UPPER FLOOR</u>

FRONT ELEVATION

NOTES:

1. FORCES ARE DETERMINED PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10 STRENGTH DESIGN IS USED. (SDs = 2.50, 2p = 1.0, 1p = 1.5, 1p = 2.5, 1p z/h < 1)

HORIZONTAL FORCE (Eh) = 1.80 Wp VERTICAL FORCE (Ev) = 0.50 Wp

- 2. CENTER OF GRAVITY (C.G.) AND WEIGHT ARE THE GOVERNING PARAMETERS FOR DESIGN. THESE CALCULATIONS ENCOMPASS ALL WEIGHTS UP TO THE MAXIMUM WEIGHT SHOWN.
- 3. STRUCTURAL ENGINEER OF RECORD FOR THE BUILDING SHALL PROVIDE SUPPORT STRUCTURE DESIGNED TO SUPPORT WEIGHTS AND FORCES SHOWN IN COMBINATION WITH ALL OTHER LOADS THAT MAY BE PRESENT.

EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

www.EquipmentAnchorage.com

FOLLETT CORPORATION

DES. J. ROBERSON

11-1420 JOB NO.

> OF SHEETS

110FB425 A/W DISPENSERS

6/12/14 DATE

SEISMIC ANCHORAGE

UPPER FLOOR

MODEL	MAX WT	Ти	Vu
* 110FB425W	360#	353#	90#
110FB425A	355#	348#	89#

* USED IN CALCULATION

LOADS: PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10.

STRENGTH DESIGN IS USED (SDS = 2.50, 2p = 1.0, 1p = 1.5, 1p = 2.5, 1p

WEIGHT = 360 LB

HORIZONTAL FORCE (En) = 1.80 Wp = 648 LB

VERTICAL FORCE (E_v) = 0.50 W_p = 180 LB

BOLT FORCES:

BOLT SPEC: 1/4"ø (A36) THREADED ROD

ΦT= 1599 LB/BOLT

ΦV= 853 LB/BOLT

TENSION (T)

$$T_{\text{U MAXIMUM}} = \left[\frac{648\#(37'')(11.94'')}{2 \text{ BOLTS}(23.56'')(22.75'')} \times (0.3) \right] + \frac{648\#(37'')(13.16'')}{2 \text{ BOLTS}(22.75'')(23.56'')} - \frac{(360\#(0.9) - 180\#)(11.94'')(13.16'')}{2 \text{ BOLTS}(22.75'')(23.56'')} = 353 \text{ LB/BOLT (MAX)}$$

$$(\text{HORIZ - FRONT TO BACK}) \qquad (\text{HORIZ - SIDE TO SIDE}) \qquad (\text{0.9WEIGHT) - Ev})$$

SHEAR (V)

$$V_{UMAXIMUM} = \frac{648\#(13.16")}{4 \text{ BOLTS}(23.56")} = 90 \text{ LB/BOLT (MAX)}$$