EASE

EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

www.EquipmentAnchorage.com

FOLLETT CORPORATION

25/50 FB425 A/W DISPENSERS

DES. J. ROBERSON

ЈОВ NO. 11-1420

DATE 6/10/14

SHEET 1

No. 4197 EXP. 6-30-2016

SHEETS

SEISMIC ANCHORAGE SLAB ON GRADE

NOTES:

1. FORCES ARE DETERMINED PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10 STRENGTH DESIGN IS USED. (SDS = 2.5, Δp = 1.0, Δp = 1.5, Δp = 2.5, Δp = 2.5, Δp = 0)

HORIZONTAL FORCE (Eh) = 1.125 Wp HORIZONTAL FORCE (Emh) = 2.81 Wp (FOR CONCRETE ANCHORAGE) VERTICAL FORCE (Ev) = 0.50 Wp

- 2. CENTER OF GRAVITY (C.G.) AND WEIGHT ARE THE GOVERNING PARAMETERS FOR DESIGN. THIS PREAPPROVAL ENCOMPASSES ALL WEIGHTS UP TO THE MAXIMUM WEIGHT SHOWN.
- 3. STRUCTURAL ENGINEER OF RECORD FOR THE BUILDING SHALL PROVIDE SUPPORT STRUCTURE DESIGNED TO SUPPORT WEIGHTS AND FORCES SHOWN IN COMBINATION WITH ALL OTHER LOADS THAT MAY BE PRESENT.

EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

www.EquipmentAnchorage.com

FOLLETT CORPORATION

25/50 FB425 A/W DISPENSERS

DES. J. ROBERSON

ЈОВ NO. 11-1420

DATE 6/10/14

2

SHEETS

SEISMIC ANCHORAGE

SLAB ON GRADE

Vυ

96

95

87

85

LOADS: PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10.

(STRENGTH DESIGN IS USED) (SDS = 2.5, Δp = 1.0, |p = 1.5, Rp = 2.5, Ω_0 = 2.5 z/h = 0)

WEIGHT = 265 LB

HORIZONTAL FORCE (Emh) = 2.81 Wp = 745 LB

VERTICAL FORCE (E_V) = 0.50 W_p = 133 LB

BOLT FORCES:

BOLT SPEC: 1/4" HILTI HUS -EZ

 ϕ T = 0.75 ϕ Nn= 623 LB/BOLT (TENSION)

 $\Phi V = \Phi V n = 836 LB/BOLT (SHEAR)$

TENSION (T)

$$T_{\text{U MAXIMUM}} = \begin{bmatrix} \frac{745\#(27.38)'')(9.71'')}{2 \text{ BOLTS}(19.25)'')(18.75'')} \times (0.3) \end{bmatrix} + \frac{745\#(27.38)')(9.86'')}{2 \text{ BOLTS}(18.75)'')(19.25'')} - \frac{(265\#(0.9) - 133\#)(9.86'')(9.71'')}{2 \text{ BOLTS}(19.25)'')(18.75'')} = 347 \text{ LB/BOLT (MAX)}$$

$$(\text{HORIZ - FRONT TO BACK}) \qquad (\text{HORIZ - SIDE TO SIDE}) \qquad (\text{09WBGHT) - Ev})$$

SHEAR (V)

$$V_{UMAXIMUM} = \frac{745\#(9.71'')}{4\text{ BOLTS}(18.75'')} = 96 \text{ LB/BOLT (MAX)}$$

EASE

EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

www.EquipmentAnchorage.com

FOLLETT CORPORATION

25/50 FB425 A/W DISPENSERS

JOB NO. 11-1420

DATE 6/10/14

SHEET 1

SHEETS

SEISMIC ANCHORAGE

NOTES:

<u>UPPER FLOOR</u>

1. FORCES ARE DETERMINED PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10 STRENGTH DESIGN IS USED. (SDS = 2.5, 2p = 1.0, p = 1.5, p = 2.5, p = 2.5

VERTICAL FORCE (Ev) = 0.50 Wp

- 2. CENTER OF GRAVITY (C.G.) AND WEIGHT ARE THE GOVERNING PARAMETERS FOR DESIGN. THESE CALCULATIONS ENCOMPASS ALL WEIGHTS UP TO THE MAXIMUM WEIGHT SHOWN.
- 3. STRUCTURAL ENGINEER OF RECORD FOR THE BUILDING SHALL PROVIDE SUPPORT STRUCTURE DESIGNED TO SUPPORT WEIGHTS AND FORCES SHOWN IN COMBINATION WITH ALL OTHER LOADS THAT MAY BE PRESENT.

EASE

EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

www.EquipmentAnchorage.com

FOLLETT CORPORATION

25/50 FB425 A/W DISPENSERS

DES. J. ROBERSON

ЈОВ NO. 11-1420

DATE 6/10/14

2

SHEETS

SEISMIC ANCHORAGE

UPPER FLOOR

LOADS: PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10.

(STRENGTH DESIGN IS USED) (SDS = 2.5, Ap = 1.0, Ip = 1.5, Rp = 2.5, $\mathrm{z/h} \leq$ 1)

WEIGHT = 265 LB

HORIZONTAL FORCE (Eh) = 1.80 Wp = 477 LB

VERTICAL FORCE (E_v) = 0.50 W_p = 133 LB

BOLT FORCES:

BOLT SPEC: 1/4"ø (A36) THREADED ROD

φT= 1599 LB/BOLT

ΦV= 853 LB/BOLT

TENSION (T)

$$T_{\text{U MAXIMUM}} = \left[\frac{477\#(27.38")(9.71")}{2 \text{ BOLTS}(19.25")(18.75")} \times (0.3) \right] + \frac{477\#(27.38")(9.86")}{2 \text{ BOLTS}(18.75")(19.25")} - \frac{(265\#(0.9) - 133\#)(9.86")(9.71")}{2 \text{ BOLTS}(19.25")(18.75")} = 217 \text{ LB/BOLT (MAX)}$$

$$(\text{HORIZ - FRONT TO BACK}) \qquad (\text{HORIZ - SDE TO SDE}) \qquad (\text{0.90WEIGHT) - Ev})$$

SHEAR (V)

$$V_{U MAXIMUM} = \frac{477 \# (9.71'')}{4 \text{ BOLTS} (18.75'')} = 62 \text{ LB/BOLT (MAX)}$$