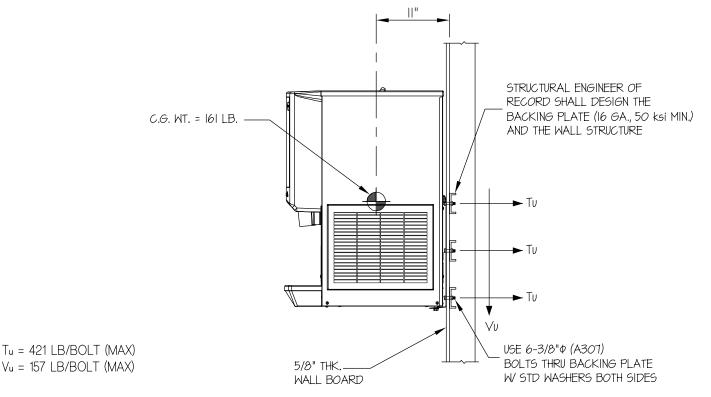
EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING www.EquipmentAnchorage.com DES. J. ROBERSON FOLLETT CORPORATION


12HI425A DISPENSER

11-1420 JOB NO. 5/9/14 DATE SHEETS

SHEET

No. 4197

SEISMIC ANCHORAGE WALL MOUNTED

SIDE ELEVATION

NOTES:

1. FORCES ARE DETERMINED PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10. STRENGTH DESIGN IS USED.

> HORIZONTAL FORCE (Eh) = 1.80 Wp (SDS = 2.5, ap = 1.0, lp = 1.5, Rp = 2.5, $z/h \le 1$) VERTICAL FORCE (Ev) = 0.50 Wp

- CENTER OF GRAVITY (C.G.) AND WEIGHT ARE THE GOVERNING PARAMETERS FOR DESIGN. THESE CALCULATIONS ENCOMPASS ALL WEIGHTS UP TO THE MAXIMUM WEIGHT SHOWN.
- 3. STRUCTURAL ENGINEER OF RECORD FOR THE BUILDING SHALL PROVIDE SUPPORT STRUCTURE DESIGNED TO SUPPORT WEIGHTS AND FORCES SHOWN IN COMBINATION WITH ALL OTHER LOADS THAT MAY BE PRESENT.

EASE

EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

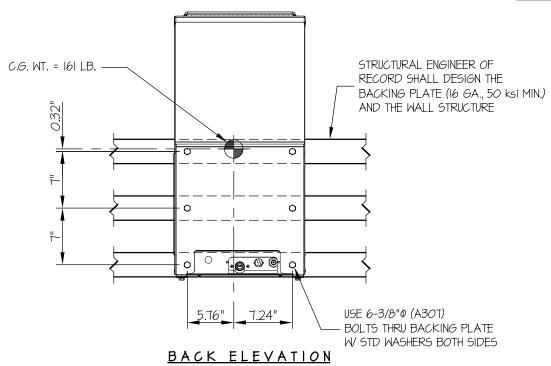
www.EquipmentAnchorage.com

FOLLETT CORPORATION

12HI425A DISPENSER

DES. J. ROBERSON

JOB NO. 11-1420


DATE 5/9/14

2

SHEETS

SEISMIC ANCHORAGE

WALL MOUNTED

<u>LOADS:</u> PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10. (STRENGTH DESIGN IS USED) (SDS = 2.5, 2p = 1.0, p = 1.5, p = 2.5, p = 2.5, p = 1.0, p = 1.5, p = 2.5, p = 2.5,

TENSION (T)

$$T_{\text{UVERTICAL}} = \frac{(161\#(1.2) + 81\#)(11")(7.24")}{1_{\text{BOLT}}(14")(13")} = 120 \text{ LB/BOLT}$$

$$T_{UPARALLEL} = \frac{290 \# (11'')(14.32'')}{1 \text{ BOLT} (13'')(14'')} = 251 \text{ LB/BOLT}$$

$$T_{\text{U PERP.}} = \frac{290 \# (14.32') (7.24'')}{1_{\text{BOLT}} (14'') (13'')} = 166 \text{ LB/BOLT}$$

$$T_{U_{MAX}} = 120# + (0.3)(166#) + 251# = 421 LB/BOLT (MAX)$$

SHEAR (V)

$$Vu_{MAX} = \sqrt{\frac{(161\#(1.2") + 81\#)(7.24")}{3 \text{ BOLTS}(13")}^2 + \left(\frac{290\#(14.32")}{2 \text{ BOLTS}(14")}\right)^2} = 157 \text{ LB/BOLT (MAX)}$$

BOLT SPEC: 3/8"ø (A307) BOLTS

φT= 3589 LB/BOLT **φ**V= 1914 LB/BOLT