EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

www.EquipmentAnchorage.com

FOLLETT CORPORATION

ICE AND WATER DISPENSER W/ BASE STAND (MODEL 12CI425A)

DES. J. ROBERSON 11-1420 JOB NO.

4/24/14

DATE

SHEETS

SEISMIC ANCHORAGE

SLAB ON GRADE

No. 4197

NOTE: ALTERNATE ANCHORING SOLUTION (I) 3/4" HILTI KB-TZ AT EACH LEG (4 TOTAL) (MIN. EMBED = 2") (MIN SLAB THICKNESS = 4")

Tu = 557 LB/SCREW (MAX) $V_u = 77 LB/SCREW (MAX)$

NOTES:

FRONT ELEVATION

1. FORCES ARE DETERMINED PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10. STRENGTH DESIGN IS USED.

> HORIZONTAL FORCE (Eh) = 1.125 Wp (SDS = 2.5, Δp = 1.0, |p| = 1.5, Rp = 2.5, Ω_0 = 2.5, z/h = 0) HORIZONTAL FORCE (Emh) = 2.81 Wp (Ω_0 = 2.5 FOR CONCRETE ANCHORAGE) VERTICAL FORCE (E_V) = 0.50 W_p

- 2. CENTER OF GRAVITY (C.G.) AND WEIGHT ARE THE GOVERNING PARAMETERS FOR DESIGN. THESE CALCULATIONS ENCOMPASS ALL WEIGHTS UP TO THE MAXIMUM WEIGHT SHOWN,
- 3. STRUCTURAL ENGINEER OF RECORD FOR THE BUILDING SHALL PROVIDE SUPPORT STRUCTURE DESIGNED TO SUPPORT WEIGHTS AND FORCES SHOWN IN COMBINATION WITH ALL OTHER LOADS THAT MAY BE PRESENT.

EASE

EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

www.EquipmentAnchorage.com

FOLLETT CORPORATION

ICE AND WATER DISPENSER W/ BASE STAND (MODEL 12CI425A)

JOB NO. 11-1420

DATE

4/24/14

2

: 2 sheets

SEISMIC ANCHORAGE

<u>SLAB ON GRADE</u>

(I) 3/8" HILTI KB-TZ AT EACH LEG (4 TOTAL) (MIN. EMBED = 2")

(MIN SLAB THICKNESS = 4")

(0.9(WEIGHT) - Ev)

SIDE ELEVATION

LOADS: PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10.

(STRENGTH DESIGN IS USED) (SDS = 2.5, Δp = 1.0, |p| = 1.5, Rp = 2.5, Ω_0 = 2.5, z/h = 0)

WEIGHT = 194 LB

HORIZONTAL FORCE (Emh) = 2.81 Wp = 545 LB

VERTICAL FORCE (Ev) = 0.50 Wp = 97 LB

BOLT FORCES:

BOLT SPEC: 1/4"ø HILTI HUS -EZ

 $\phi T = 0.75 \phi Nn = 623 LB/BOLT (TENSION)$

 $\phi V = \phi V n = 836 LB/BOLT (SHEAR)$

TENSION (T)

 $T_{\text{U MAXIMUM}} = \left[\frac{545\#(41.91')(8.02'')}{2\,\text{Bolts}\,(16.22'')(14.25'')} \times (0.3) \right] + \frac{545\#(41.91'')(9.12'')}{2\,\text{Bolts}\,(14.25'')(16.22'')} - \frac{(194\#(0.9) - 97\#)(8.02'')(9.12'')}{2\,\text{Bolts}\,(14.25'')(16.22)} = 557\,\text{LB/BOLT (MAX)}$

(HORIZ. - SIDE TO SIDE)

SHEAR (V)

$$V_{\text{U MAXIMUM}} = \frac{545\#(8.02")}{4 \text{ BOLTS}(14.25")} = 77 \text{ LB/BOLT (MAX)}$$

(HORIZ. - FRONT TO BACK)

EASE

EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

www.EquipmentAnchorage.com

No. 4197

SHEET

FOLLETT CORPORATION

ICE AND WATER DISPENSER W/ BASE STAND (MODEL 12CI425A)

DES. J. ROBERSON

JOB NO. 11-1420

DATE 4/24/14

SEISMIC ANCHORAGE

 $T_u = 353 LB/SCREW (MAX)$ $V_u = 49 LB/SCREW (MAX)$

FRONT ELEVATION

NOTES:

1. FORCES ARE DETERMINED PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10 STRENGTH DESIGN IS USED.

HORIZONTAL FORCE (Eh) = 1.80 Wp (SDS = 2.5, ap = 1.0, lp = 1.5, Rp = 2.5, $z/h \le 1$) VERTICAL FORCE (Ev) = 0.50 Wp

- 2. CENTER OF GRAVITY (C.G.) AND WEIGHT ARE THE GOVERNING PARAMETERS FOR DESIGN. THESE CALCULATIONS ENCOMPASS ALL WEIGHTS UP TO THE MAXIMUM WEIGHT SHOWN.
- 3. STRUCTURAL ENGINEER OF RECORD FOR THE BUILDING SHALL PROVIDE SUPPORT STRUCTURE DESIGNED TO SUPPORT WEIGHTS AND FORCES SHOWN IN COMBINATION WITH ALL OTHER LOADS THAT MAY BE PRESENT.

EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

www.EquipmentAnchorage.com

FOLLETT CORPORATION

ICE AND WATER DISPENSER W/ BASE STAND (MODEL 12CI425A)

DES. J. ROBERSON 11-1420 JOB NO.

4/24/14 DATE

SHEETS

SEISMIC ANCHORAGE

UPPER FLOOR

SIDE ELEVATION

LOADS: PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10,

(STRENGTH DESIGN IS USED) (SDS = 2.5, Δp = 1.0, |p| = 1.5, Rp = 2.5, z/h < 1)

WEIGHT = 194 LB

HORIZONTAL FORCE (Eh) = 1.80 Wp = 349 LB

VERTICAL FORCE (Ev) = 0.50 Wp = 97 LB

BOLT FORCES:

BOLT SPEC: 3/8" (A36) THREADED ROD

ΦT= 1599 LB/BOLT

ΦV= 853 LB/BOLT

TENSION (T)

$$T_{\text{U MAXIMUM}} = \begin{bmatrix} 349\#(41.91")(8.02") \\ 2\text{ BOLTS } (16.22")(14.25") \end{bmatrix} \times (0.3) + \frac{349\#(41.91")(9.12")}{2\text{ BOLTS } (14.25")(16.22")} - \frac{(194\#(0.9) - 97\#)(8.02")(9.12")}{2\text{ BOLTS } (14.25")(16.22)} = 353 \text{ LB/BOLT (MAX)}$$

$$(\text{HORIZ - FRONT TO BACK}) \qquad (\text{HORIZ - SIDE TO SIDE}) \qquad (\text{0.90MEIGHT) - Ev})$$

SHEAR (V)

$$V_{UMAXIMUM} = \frac{349\#(8.02")}{4_{BOLTS}(14.25")} = 49 LB/BOLT (MAX)$$