EASE

EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

www.EquipmentAnchorage.com

FOLLETT CORPORATION

25/50 HI/HR 425 A/W DISPENSERS

DES. J. ROBERSON
JOB NO. 11-1420

DATE 5/22/14

SHEET

No. 4197

SHEETS

<u>SEISMIC ANCHORAGE</u> <u>WALL MOUNTED</u>

SIDE ELEVATION

NOTES:

- 1. FORCES ARE DETERMINED PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10 STRENGTH DESIGN IS USED. (SDs = 2.5, α_p = 1.0, I_p = 1.5, R_p = 2.5, $z/h \le 1$) HORIZONTAL FORCE (E_h) = 1.80 VERTICAL FORCE (E_v) = 0.50 W_p
- 2. CENTER OF GRAVITY (C.G.) AND WEIGHT ARE THE GOVERNING PARAMETERS FOR DESIGN. THESE CALCULATIONS ENCOMPASS ALL WEIGHTS UP TO THE MAXIMUM WEIGHT SHOWN.
- 3. STRUCTURAL ENGINEER OF RECORD FOR THE BUILDING SHALL PROVIDE SUPPORT STRUCTURE DESIGNED TO SUPPORT WEIGHTS AND FORCES SHOWN IN COMBINATION WITH ALL OTHER LOADS THAT MAY BE PRESENT.

EQUIPMENT ANCHORAGE & SEISMIC ENGINEERING

www.EquipmentAnchorage.com

FOLLETT CORPORATION

25/50 HI/HR 425 A/W DISPENSERS

DES. J. ROBERSON 11-1420 JOB NO.

5/22/14 DATE

SHEETS

WALL MOUNTED

SEISMIC ANCHORAGE

STRUCTURAL ENGINEER OF RECORD SHALL DESIGN THE BACKING PLATE (16 GA., 50 ksi MIN.) AND THE WALL STRUCTURE

MODEL	MAX WT	ıγıı	Τυ	Vu
* 50HI425A	254	15"	313	157
25HI425A	225	13"	319	154
50HR425	168	15"	208	104
25HR425	139	13"	198	96

* USED IN CALCULATION

BACK ELEVATION

LOADS: PER 2013 CALIFORNIA BUILDING CODE AND ASCE 7-10.

(STRENGTH DESIGN IS USED) (SDS = 2.5, Δ_p = 1.0, I_p = 1.5, R_p = 2.5, z/h < 1)

WEIGHT = 254 LB

HORIZONTAL FORCE (Eh) = 1.80 Wp = 457 LB

VERTICAL FORCE (E_V) = 0.50 W_D = 127 LB

BOLT FORCES:

TENSION (T)

$$Tu_{VERTICAL} = \frac{(254\#(1.2) + 127\#)(10.71")(9.2")}{1 \text{ BOLT}(30")(16")} = 89 \text{ LB/BOLT}$$

$$T_{UPARALLEL} = \frac{457 \# (10.71'')(8.69'')}{1 \text{ BOLT} (16'')(15'')} = 178 \text{ LB/BOLT}$$

$$T_{\text{U PERP}} = \frac{457\#(8.69^{\circ})(9.2^{\circ})}{1_{\text{POLT}}(15^{\circ})(16^{\circ})} = 153 \text{ LB/BOLT}$$

$$T_{UMAX} = 89# + (0.3)(153#) + 178# = 313 LB/BOLT (MAX)$$

SHEAR (V)

$$V_{UMAX} = \sqrt{\frac{(254\#(1.2") + 127\#)(9.2")}{3 \text{ BOLTS}(16")}^2 + \left(\frac{457\#(8.69")}{2 \text{ BOLTS}(15")}\right)^2} = 157 \text{ LB/BOLT (MAX)}$$

BOLT SPEC: 3/8"ø (A307) BOLTS

φT= 3589 LB/BOLT φV= 1914 LB/BOLT